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Data gathering and Preprocessing

e Historical data for the stocks AAPL, TSLA, AMD, SBUX, FB from Yahoo finance for the
period 06/02/2012 - 06/02/2022.

e Considered only the daily opening prices.

e Testing data consists of last 90 days (1/25/2022 - 06/02/2022)

e Remaining sample used for the training data (06/02/2012 — 1/24/2022)

e Normalized training and testing data using sklearn StandardScaler package.



Modeling Approach: Long Short Term Memory (LSTM)

Today’s stock price will determined by:

e The pattern the stock has been following in the past days, which could be down or up.
e The price of the stock on the previous day, because many traders compare the stock’s previous day’s price before

buying it LSTM

forget gate cell state

These relationships can be generalized to any problem as:

e The previous cell state: information present in the memory after the previous time ¢
e The previous hidden state: output of the previous cell state, h, ,
e The input at the current time step: new information at that moment, x;

The Long Short Term Memory model has these features!

input gate output gate
e LSTMis able to store information from the past which helps especially predict stotn piice
fluctuations based on past prices. & b o

sigmoid tanh pointwise pointwise vector

e LSTM has gates capable of regulating what information to keep or forge
e LSTM cell contains a forget state, input gate, output gate, and cell state, along with
two activation functions, Sigmoid and tanh.



LSTM Structure and Mechanism

Cell State: working like a memory and key to LSTMs. It carries informations and associated ¢, ,
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with some linear interactions. LSTM either remove information from this state or add
information to this state to carry over.

Forget Gate: decides what information need to forget from the cell state. It takes inputs h,
and x; and outputs a number from 0 to 1 for each number in the cell state C,; . 0 to forget and 1 to input.

Input Gate: add information to the cell state in three steps: (1)Like the forget gate act as a filter for all the
information from h,; and X, ; (2) Create a vector containing all possible values that can be added to the cell state
by using tanh function; (3) multiply the created vector to the value of the regulatory filter and then add this
information to the cell state.

Output Gate: outputs selected useful information from the current cell state in three steps: (1) apply tanh function
to the cell state and create a vector; (2) make a filter using the values of h,; and x, so that can regulate the values
need to be output; (3) multiply the vector created in step 1 to the value of regulatory filter and send it as output

and send it to the hidden state of next cell.



Network Architecture

e Model type: Keras sequential API

e Two LSTM network with outer spaces dimension 64 and 32 respectively.
e Dropout 20%

e Activation Function: Relu; Optimizer: Adam ; Loss : mse

e Input space: A 3D tensor [no of sample, time step, no of features]

e No of epoch: 3; batch size: 1



Empirical Results

Stock Price Prediction with 14-time steps:
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Stock Price Prediction with 14-time steps:
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Stock Price Prediction with 14-time steps:
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Stock Price Prediction with 60-time steps:
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Results Discussion

The predicted value was not very accurate always compared to the real price, but it
could capture the direction of price movement most of the times.

Among all the stocks, prediction for TSLA, FB, and SBUX looked more promising
than AMD and AAPL using 14 time steps.

Prediction for FB, SBUX, AAPL looked better than AMD and TSLA using 60
time steps

For more volatile stocks like TSLA, FB, use of short time steps 14 seems better
For less volatile stocks like SBUX, AAPL use of long time steps 60 gives better
result



Future Direction

e Can play with different model architecture, hyperparameter
tuning to see if that increases the performance

e Can do more exploratory data analysis to figure out some
relation between the model prediction and the properties of data.

e (Can do time series cross validation to improve the
generalization power of our model.

e The predicted results can be used for portfolio optimization

problems.
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